Electronics - تحليل استجابة التردد لمضخم BJT بتركيب الباعث المشترك (CE)
هندسة كهربائية | Electrical Engineering دارات الكترونية | Electronics circuits
مهني|Professional
- 2024-12-16
BJT CE Amplifier Frequency Response Analysis
A common-emitter (CE) BJT amplifier circuit is presented using a 2N3904 transistor and associated resistors, capacitors, and biasing values.
The analysis focuses on both low-frequency and high-frequency behaviors.
Low-Frequency Analysis
Key steps:
-
Draw the π-model (ignoring r0r_0r0) for low-frequency.
-
Considering coupling capacitor C1C_1C1:
-
Derive voltage gain and corner frequency:
Av=(RB∣∣rπRB∣∣rπ+Rsig)(−gmRL′)⋅ss+ωp1A_v = \left( \frac{R_B || r_\pi}{R_B || r_\pi + R_{sig}} \right) (-g_m R_L') \cdot \frac{s}{s + \omega_{p1}}Av=(RB∣∣rπ+RsigRB∣∣rπ)(−gmRL′)⋅s+ωp1swhere RL′=RC∣∣RLR_L' = R_C || R_LRL′=RC∣∣RL
ωp1=1C1(RB∣∣rπ+Rsig)\omega_{p1} = \frac{1}{C_1 (R_B || r_\pi + R_{sig})}ωp1=C1(RB∣∣rπ+Rsig)1
-
-
Considering coupling capacitor C2C_2C2:
-
Corner frequency:
ωp3=1C2(RC+RL)\omega_{p3} = \frac{1}{C_2 (R_C + R_L)}ωp3=C2(RC+RL)1
-
-
Considering bypass capacitor CEC_ECE:
-
Using T-model:
ωp2=1CE(RE∣∣(re+RB∣∣Rsig1+β))\omega_{p2} = \frac{1}{C_E \left( R_E || \left(r_e + \frac{R_B || R_{sig}}{1+\beta} \right) \right)}ωp2=CE(RE∣∣(re+1+βRB∣∣Rsig))1
-
-
Overall low-frequency gain:
Av=(RBRB+Rsig)(−gmRL′)⋅ss+ωp1ss+ωp2ss+ωp3A_v = \left( \frac{R_B}{R_B + R_{sig}} \right) (-g_m R_L') \cdot \frac{s}{s+\omega_{p1}} \frac{s}{s+\omega_{p2}} \frac{s}{s+\omega_{p3}}Av=(RB+RsigRB)(−gmRL′)⋅s+ωp1ss+ωp2ss+ωp3sApproximate lower cutoff frequency:
ωL≈ωp12+ωp22+ωp32\omega_L \approx \sqrt{\omega_{p1}^2 + \omega_{p2}^2 + \omega_{p3}^2}High-Frequency Analysis
-
Draw the π-model including r0r_0r0 and internal capacitors CπC_\piCπ, CμC_\muCμ and series base resistance rxr_xrx.
-
Apply Miller’s theorem:
-
Voltage gain:
Av=(RBRB+Rsig)(rπrπ+rx+(RB∣∣Rsig))(−gmRL′)⋅11+s/ωHA_v = \left( \frac{R_B}{R_B + R_{sig}} \right) \left( \frac{r_\pi}{r_\pi + r_x + (R_B || R_{sig})} \right) (-g_m R_L') \cdot \frac{1}{1 + s/\omega_H}Where:
ωH=1CinRsig′\omega_H = \frac{1}{C_{in} R_{sig}'}with:
Rsig′=rπ∣∣(rx+RB∣∣Rsig)R_{sig}' = r_\pi || (r_x + R_B || R_{sig})and:
Cin=Cπ+Cμ(1+gmRL′)C_{in} = C_\pi + C_\mu (1 + g_m R_L')
-
-
هل كان الشرح مفيد؟

- 0/5
شروحات مشابهة
- هندسة كهربائية | Electrical Engineering
- دارات الكترونية | Electronics circuits
- هندسة عمارة | Architectural Engineering
- هندسة مدنية | Civil Engineering
- هندسة ميكانيك | Mechanical Engineering
- هندسة صناعية | Industrial engineering
- هندسة المساحة | Landscape
- موشن جرافيك | Motion graphics